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Spherical and cyl indrical models for craze 
growth 

In a previous paper [1] we applied the technique 
of  finite element analysis to the problem of failure 
by yielding of  a uniform cylindrical void system, 
taken as a model for the process of  craze growth in 
plastics. However, the smallest voids formed during 
the initiation of  crazing often seem to have a 
spherical rather than a cylindrical form [2, 3] .  We 
have, therefore, repeated some of our previous 
calculations using a spherical hole model to estab- 
lish whether or not there is a significant difference 
in the conclusions reached. The new model simply 
substitutes a three-dimensional system of spherical 
holes for the two-dimensional cylindrical voids 
used in the previous paper [1].  

A single module of  the spherical void array is 
illustrated in Fig. 1 where the voids are of  radius a 

and their centres are spaced at an equal distance of  
2(a + d) in each of  the x, y and z directions. The 
loading of  prime interest is a hydrostatic tensile 
loading which can be accomplished by prescribing 
displacements A on the three facesx = a + d , y  = 
a + d  and z = a  + d  in the x, y and z directions 
respectively. The three faces defined by x = 0, 
y = 0 and z = 0 are restrained from moving in the 

x, y and z directions respectively. 
Initially, two void volume fractions were con- 

sidered corresponding to d/a = 0.5 and d/a = 0.1. 
In each case the solution was performed using 1,8 
and 27 three-dimensional quadratic elements in 
turn and the 8 element mesh employed is illustrated 
in Fig. lb. A Van Mises yield criterion was assumed 
and the material properties, listed in Fig. la, are 
the same as those employed in [1].  The variation 
of  the total reactive force on any face with increas- 
ing prescribed displacement is shown in Fig. 2a 
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Figure 1 Illustration of spherical void model. (a) Module analysed; (b) quadratic isoparametric element mesh employed. 
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Figure 2 Calculated stress/displacement curves for cylindrical and spherical models  (for two-dimensional  solution with 

cylindrical model).  
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Figure 3 Collapse stress plotted against volume fraction of voids for cylindrical and spherical models. (a) Hydrostatic 
tensile loading; (b) uniaxial tension-fixed edge. Points for spheres to be placed on the relevant curve for Fig. 5 of 
previous paper [ 1 ]. 

and b for d/a = 0.5 and d/a = 0.1 respectively. For 
both situations the results for the 8 and 27 element 
meshes are in good agreement, with the 1 element 
idealization over-estimating the stiffness of  the 
model. The results of  the previous two-dimensional 
investigation [1 ] with the same d/a values are also 
included in Fig. 2a and b. The two-dimensional 
void volume fraction of  0.37 in Fig. 2a and 0.65 in 
Fig. 2b correspond to the same void size and spac- 
ing used in the respective three-dimensional analy- 
ses and it is evident that on this basis a large 
discrepancy exists between the two-dimensional 
and three-dimensional results. However, from Fig 
2b it is seen that the two-dimensional and three- 
dimensional solutions compare well when the void 
volume fraction is chosen to be of  comparable 
value, the collapse loads by both analyses then 
only differing by some 5%. 

Also of  importance is the loading of  such models 
in uniaxial tension with a restrained lateral edge 
condition as considered for the cylindrical model 
in [1].  A plot of  collapse stress against void volume 
fraction is shown in Fig. 3. In Fig. 3a two- and 
three-dimensional results for hydrostatic loading 

are compared for three of  the void volume fractions 
employed in the previous paper [1] and Fig. 3b 
shows a similar comparison for the uniaxial loading 
case. 

From these results we can conclude that on a 
volume basis the differences in yield behaviour in 
hydrostatic tension between the spherical and 
cylindrical models are not large, so that further 
calculations may safely be made with the cylindri- 
cal model. 
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